35 resultados para biostatistics

em Queensland University of Technology - ePrints Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Perez-Losada et al. [1] analyzed 72 complete genomes corresponding to nine mammalian (67 strains) and 2 avian (5 strains) polyomavirus species using maximum likelihood and Bayesian methods of phylogenetic inference. Because some data of 2 genomes in their work are now not available in GenBank, in this work, we analyze the phylogenetic relationship of the remaining 70 complete genomes corresponding to nine mammalian (65 strains) and two avian (5 strains) polyomavirus species using a dynamical language model approach developed by our group (Yu et al., [26]). This distance method does not require sequence alignment for deriving species phylogeny based on overall similarities of the complete genomes. Our best tree separates the bird polyomaviruses (avian polyomaviruses and goose hemorrhagic polymaviruses) from the mammalian polyomaviruses, which supports the idea of splitting the genus into two subgenera. Such a split is consistent with the different viral life strategies of each group. In the mammalian polyomavirus subgenera, mouse polyomaviruses (MPV), simian viruses 40 (SV40), BK viruses (BKV) and JC viruses (JCV) are grouped as different branches as expected. The topology of our best tree is quite similar to that of the tree constructed by Perez-Losada et al.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seasonal patterns have been found in a remarkable range of health conditions, including birth defects, respiratory infections and cardiovascular disease. Accurately estimating the size and timing of seasonal peaks in disease incidence is an aid to understanding the causes and possibly to developing interventions. With global warming increasing the intensity of seasonal weather patterns around the world, a review of the methods for estimating seasonal effects on health is timely. This is the first book on statistical methods for seasonal data written for a health audience. It describes methods for a range of outcomes (including continuous, count and binomial data) and demonstrates appropriate techniques for summarising and modelling these data. It has a practical focus and uses interesting examples to motivate and illustrate the methods. The statistical procedures and example data sets are available in an R package called ‘season’. Adrian Barnett is a senior research fellow at Queensland University of Technology, Australia. Annette Dobson is a Professor of Biostatistics at The University of Queensland, Australia. Both are experienced medical statisticians with a commitment to statistical education and have previously collaborated in research in the methodological developments and applications of biostatistics, especially to time series data. Among other projects, they worked together on revising the well-known textbook "An Introduction to Generalized Linear Models," third edition, Chapman Hall/CRC, 2008. In their new book they share their knowledge of statistical methods for examining seasonal patterns in health.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a model-based approach to unify clustering and network modeling using time-course gene expression data. Specifically, our approach uses a mixture model to cluster genes. Genes within the same cluster share a similar expression profile. The network is built over cluster-specific expression profiles using state-space models. We discuss the application of our model to simulated data as well as to time-course gene expression data arising from animal models on prostate cancer progression. The latter application shows that with a combined statistical/bioinformatics analyses, we are able to extract gene-to-gene relationships supported by the literature as well as new plausible relationships.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Goals of work: The aim of this secondary data analysis was to investigate symptom clusters over time for symptom management of a patient group after commencing adjuvant chemotherapy. Materials and methods: A prospective longitudinal study of 219 cancer outpatients conducted within 1 month of commencing chemotherapy (T1), 6 months (T2), and 12 months (T3) later. Patients' distress levels were assessed for 42 physical symptoms on a clinician-modified Rotterdam Symptom Checklist. Symptom clusters were identified in exploratory factor analyses at each time. Symptom inclusion in clusters was determined from structure coefficients. Symptoms could be associated with multiple clusters. Stability over time was determined from symptom cluster composition and the proportion of symptoms in the initial symptom clusters replicated at later times. Main results Fatigue and daytime sleepiness were the most prevalent distressing symptoms over time. The median number of concurrent distressing symptoms approximated 7, over time. Five consistent clusters were identified at T1, 2, and T3. An additional two clusters were identified at 12 months, possibly due to less variation in distress levels. Weakness and fatigue were each associated with two, four, and five symptom clusters at T1, T2, and T3, respectively, potentially suggesting different causal mechanisms. Conclusion: Stability is a necessary attribute of symptom clusters, but definitional clarification is required. We propose that a core set of concurrent symptoms identifies each symptom cluster, signifying a common cause. Additional related symptoms may be included over time. Further longitudinal investigation is required to identify symptom clusters and the underlying causes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method of eliciting prior distributions for Bayesian models using expert knowledge is proposed. Elicitation is a widely studied problem, from a psychological perspective as well as from a statistical perspective. Here, we are interested in combining opinions from more than one expert using an explicitly model-based approach so that we may account for various sources of variation affecting elicited expert opinions. We use a hierarchical model to achieve this. We apply this approach to two problems. The first problem involves a food risk assessment problem involving modelling dose-response for Listeria monocytogenes contamination of mice. The second concerns the time taken by PhD students to submit their thesis in a particular school.